2017年03月19日
名大入試問題 2017 (6)
明日は「春分の日」です。個人的にはもっと暖かくなってほしいところです。
2017 年名大入試問題のラストです。結構、悩まされました。
-----
次の問に答えよ。
(1) 次の条件 (*) を満たす 3 つの自然数の組 ( a, b, c ) をすべて求めよ。
(*) a < b < c かつ 1/a +1/b + 1/c = 1/2 である。
(2) 偶数 2n ( n ≥ 1 ) の 3 つの正の約数 p, q, r で p > q > r と p + q + r = n を満たす組 ( p, q, r ) の個数を f(n) とする。ただし、条件を満たす組が存在しない場合は、f(n) = 0 とする。n が自然数全体を動くときの f(n) の最大値 M を求めよ。また、f(n) = M となる自然数 n の中で最小のものを求めよ。
(1) (*) より 1/a > 1/2 なので a > 2 になります。
a = 3 のとき、1/b + 1/c = 1/2 - 1/3 = 1/6 より 1/b < 1/6 なので b > 6 です。
b = 7 のとき 1/c = 1/6 - 1/7 = 1/42、b = 8 のとき 1/c = 1/6 - 1/8 = 1/24、b = 9 のとき 1/c = 1/6 - 1/9 = 1/18、b = 10 のとき 1/c = 1/6 - 1/10 = 1/15、b = 11 のとき 1/c = 1/6 - 1/11 = 5/66、b = 12 のとき 1/c = 1/6 - 1/12 = 1/12 で b = c となるのでこれ以上はありません。よって、( 3, 7, 42 ), ( 3, 8, 24 ), ( 3, 9, 18 ), ( 3, 10, 15 ) が得られます。
a = 4 のとき、1/b + 1/c = 1/2 - 1/4 = 1/4 より 1/b < 1/4 なので b > 4 です。
b = 5 のとき 1/c = 1/4 - 1/5 = 1/20、b = 6 のとき 1/c = 1/4 - 1/6 = 1/12、b = 7 のとき 1/c = 1/4 - 1/7 = 3/28、b = 8 のとき 1/c = 1/4 - 1/8 = 1/8 で b = c となるのでこれ以上はありません。よって、( 4, 5, 20 ), ( 4, 6, 12 ) が得られます。
a = 5 のとき、1/b + 1/c = 1/2 - 1/5 = 3/10 より 1/b < 3/10 なので b > 3 ですが、a = 5 なので b ≥ 6 となります。
b = 6 のとき 1/c = 3/10 - 1/6 = 2/15、b = 7 のとき 1/c = 3/10 - 1/7 = 11/70 > 1/7 で b > c となるのでこれ以上はありません。
a = 6 のとき、1/b + 1/c = 1/2 - 1/6 = 1/3 より 1/b < 1/3 なので b > 3 ですが、a = 6 なので b ≥ 7 となります。
b = 7 のとき 1/c = 1/3 - 1/7 = 4/21 > 1/7 で b > c となるのでこれ以上はありません。
以下、a ≥ 6 のときは b ≥ a + 1 であり、1/c = 1/2 - 1/a - 1/(a+1) ≥ 1/2 - 1/6 - 1/7 = 4/21 > 1/7 より c < 7 となり、 a < b < c を満たさなくなるのでこれ以上はありません。
よって、( 3, 7, 42 ), ( 3, 8, 24 ), ( 3, 9, 18 ), ( 3, 10, 15 ), ( 4, 5, 20 ), ( 4, 6, 12 ) の 6 つになります。
(2) p = 2n/p'、q = 2n/q'、r = 2n/q' とすると、p' < q' < r' かつ 1/p' + 1/q' + 1/r' = p/2n + q/2n + r/2n = 1/2 となるので、( p', q', r' ) の組は (1) でもとめたものに限ります。以下、k を 1 以上の整数とします。
( p', q', r' ) = ( 3, 7, 42 ) のとき、n = 21k ならば p = 14k, q = 6k, r = k で p + q + r = 21k なので成り立ちます。
( p', q', r' ) = ( 3, 8, 24 ) のとき、n = 12k ならば p = 8k, q = 3k, r = k で p + q + r = 12k なので成り立ちます。
( p', q', r' ) = ( 3, 9, 18 ) のとき、n = 9k ならば p = 6k, q = 2k, r = k で p + q + r = 9k なので成り立ちます。
( p', q', r' ) = ( 3, 10, 15 ) のとき、n = 15k ならば p = 10k, q = 3k, r = 2k で p + q + r = 15k なので成り立ちます。
( p', q', r' ) = ( 4, 5, 20 ) のとき、n = 10k ならば p = 5k, q = 4k, r = k で p + q + r = 10k なので成り立ちます。
( p', q', r' ) = ( 4, 6, 12 ) のとき、n = 6k ならば p = 3k, q = 2k, r = k で p + q + r = 6k なので成り立ちます。
すなわち、n = 6k, 9k, 10k, 12k, 15k, 21k のとき p + q + r = n を満たす ( p, q, r ) の組が存在することになります。これらの最初公倍数は 2・2・3・3・5・7k = 1260k で、このとき f(n) = 6 となります。よって、M = 6 で、最小の数は 1260 です。
2017 年名大入試問題のラストです。結構、悩まされました。
-----
次の問に答えよ。
(1) 次の条件 (*) を満たす 3 つの自然数の組 ( a, b, c ) をすべて求めよ。
(*) a < b < c かつ 1/a +1/b + 1/c = 1/2 である。
(2) 偶数 2n ( n ≥ 1 ) の 3 つの正の約数 p, q, r で p > q > r と p + q + r = n を満たす組 ( p, q, r ) の個数を f(n) とする。ただし、条件を満たす組が存在しない場合は、f(n) = 0 とする。n が自然数全体を動くときの f(n) の最大値 M を求めよ。また、f(n) = M となる自然数 n の中で最小のものを求めよ。
(1) (*) より 1/a > 1/2 なので a > 2 になります。
a = 3 のとき、1/b + 1/c = 1/2 - 1/3 = 1/6 より 1/b < 1/6 なので b > 6 です。
b = 7 のとき 1/c = 1/6 - 1/7 = 1/42、b = 8 のとき 1/c = 1/6 - 1/8 = 1/24、b = 9 のとき 1/c = 1/6 - 1/9 = 1/18、b = 10 のとき 1/c = 1/6 - 1/10 = 1/15、b = 11 のとき 1/c = 1/6 - 1/11 = 5/66、b = 12 のとき 1/c = 1/6 - 1/12 = 1/12 で b = c となるのでこれ以上はありません。よって、( 3, 7, 42 ), ( 3, 8, 24 ), ( 3, 9, 18 ), ( 3, 10, 15 ) が得られます。
a = 4 のとき、1/b + 1/c = 1/2 - 1/4 = 1/4 より 1/b < 1/4 なので b > 4 です。
b = 5 のとき 1/c = 1/4 - 1/5 = 1/20、b = 6 のとき 1/c = 1/4 - 1/6 = 1/12、b = 7 のとき 1/c = 1/4 - 1/7 = 3/28、b = 8 のとき 1/c = 1/4 - 1/8 = 1/8 で b = c となるのでこれ以上はありません。よって、( 4, 5, 20 ), ( 4, 6, 12 ) が得られます。
a = 5 のとき、1/b + 1/c = 1/2 - 1/5 = 3/10 より 1/b < 3/10 なので b > 3 ですが、a = 5 なので b ≥ 6 となります。
b = 6 のとき 1/c = 3/10 - 1/6 = 2/15、b = 7 のとき 1/c = 3/10 - 1/7 = 11/70 > 1/7 で b > c となるのでこれ以上はありません。
a = 6 のとき、1/b + 1/c = 1/2 - 1/6 = 1/3 より 1/b < 1/3 なので b > 3 ですが、a = 6 なので b ≥ 7 となります。
b = 7 のとき 1/c = 1/3 - 1/7 = 4/21 > 1/7 で b > c となるのでこれ以上はありません。
以下、a ≥ 6 のときは b ≥ a + 1 であり、1/c = 1/2 - 1/a - 1/(a+1) ≥ 1/2 - 1/6 - 1/7 = 4/21 > 1/7 より c < 7 となり、 a < b < c を満たさなくなるのでこれ以上はありません。
よって、( 3, 7, 42 ), ( 3, 8, 24 ), ( 3, 9, 18 ), ( 3, 10, 15 ), ( 4, 5, 20 ), ( 4, 6, 12 ) の 6 つになります。
(2) p = 2n/p'、q = 2n/q'、r = 2n/q' とすると、p' < q' < r' かつ 1/p' + 1/q' + 1/r' = p/2n + q/2n + r/2n = 1/2 となるので、( p', q', r' ) の組は (1) でもとめたものに限ります。以下、k を 1 以上の整数とします。
( p', q', r' ) = ( 3, 7, 42 ) のとき、n = 21k ならば p = 14k, q = 6k, r = k で p + q + r = 21k なので成り立ちます。
( p', q', r' ) = ( 3, 8, 24 ) のとき、n = 12k ならば p = 8k, q = 3k, r = k で p + q + r = 12k なので成り立ちます。
( p', q', r' ) = ( 3, 9, 18 ) のとき、n = 9k ならば p = 6k, q = 2k, r = k で p + q + r = 9k なので成り立ちます。
( p', q', r' ) = ( 3, 10, 15 ) のとき、n = 15k ならば p = 10k, q = 3k, r = 2k で p + q + r = 15k なので成り立ちます。
( p', q', r' ) = ( 4, 5, 20 ) のとき、n = 10k ならば p = 5k, q = 4k, r = k で p + q + r = 10k なので成り立ちます。
( p', q', r' ) = ( 4, 6, 12 ) のとき、n = 6k ならば p = 3k, q = 2k, r = k で p + q + r = 6k なので成り立ちます。
すなわち、n = 6k, 9k, 10k, 12k, 15k, 21k のとき p + q + r = n を満たす ( p, q, r ) の組が存在することになります。これらの最初公倍数は 2・2・3・3・5・7k = 1260k で、このとき f(n) = 6 となります。よって、M = 6 で、最小の数は 1260 です。