2017年07月30日

魚料理

昨日はとある子ども向けのイベントに参加してきました。

夕食は子どもたちといっしょに食べたんですけど、そこにあった鯖の味噌煮にだれも手を出さなかったのにはちょっと笑いました。子どもには人気ないんですね。自分は好きなので食べましたが。
子どもたちにとっては魚よりも肉のほうが好きなんでしょうね。自分も子供の頃はそうでした。特に刺身が苦手でした。でも、三重県の鳥羽で捕れたての魚の刺身を食べたときはあまりのおいしさにビックリしました。それから少しずつ食べられるようになったような気が。

魚料理の中でも鯖の味噌煮というのは子どもにとっては地味に見えるんでしょう。もう少し見た目の派手なマリネとかならよかったのかも。

数学問題bot(個人用)から京大の問題です。例によって合っている保証はありません。

-----

a, b は a > b を満たす自然数とし、p, d は素数で p は奇素数とする。このとき、ap - bp = d であるならば、d を 2p で割った余りは 1 であることを示せ ( 95 京大前期 )

ap - bp = ( a - b )( ap-1 + ap-2b + ... + bp-1 ) より、d が素数ならば ap-1 + ap-2b + ... + bp-1 ≠ 1 より a - b = 1 である必要があります。従って、a = b + 1 であり、

d = ( b + 1 )p - bp
= Σk{0→p}( [ p! / k!(p-k)! ]bp-k ) - bp
= Σk{1→p-1}( [ p! / k!(p-k)! ]bp-k ) + 1

と変形することができます。ここで p は素数なので、p! / k!(p-k)! は分母の k!(p-k)! に含まれる素因数がすべて p と互いに素であり、p を和の外側にくくり出すことができます。従って、p をくくり出した後の和の部分を N として

d = pN + 1

の形に表すことができます。

d = ( b + 1 )p - bp より ( b + 1 )p と bp のいずれかが奇数なので d は奇数です。p は奇数なので、上式において N は偶数であることを意味し、N = 2M として

d = 2pM + 1

となります。よって、d は 2p で割ると 1 余ることが証明されました。  

Posted by fussy at 21:24Comments(0)TrackBack(0)数学