2014年04月20日

睡眠時間

今日も寒い一日でした。本当に四月中旬なんだろうか。

明日はいつもより 30 分ほど早く起きなければいけません。少々ヘコんでいます。ちなみにいつもは 6 時に起きてます。寝るのがだいたい 0 時頃になるので 6 時間は寝ていることになります。しかし、睡眠時間が足りないようで、昼食後は眠気に襲われて特につらいです。
適正な睡眠時間は人によってバラバラで、通常は 6 時間程度と言われていますが自分の場合はもう少し必要なようです。睡眠時間は 1.5 時間単位にするとよいという事もあって、6 時間で足りなければ 7.5 時間眠ればいいものの、そこまで増やすことはできそうにありません。なので、休みの日にゆっくり眠ることで補うようにはしてます。そうは言ってもなかなか難しいですけどね。

今日も「アルゴリズムのコーナー」の作成をしていました。しかし、同じ事ばかり考えていると頭が煮つまってくるので、途中で「数学問題 bot」から問題を選んで悩んでました。

---

任意に選ばれた 4 つの整数を一度ずつ使い、四則演算子によって数式を作る。この時必ず 10 の倍数が作れることを示せ(wand125様)

まず、10 の倍数になるためには一桁目がゼロになればよく、一桁目の数は各整数の一桁目だけで決まるので、二桁目以降は無視できます。よって、ここからは一桁目の数だけを考えます。ゼロが入ればその数を掛けることでゼロになるので除外できます。また、同じ数が含まれればその差はゼロになるのでやはり除外できます。すると、考えられる組み合わせは 1 から 9 までの数から 4 つを選択する場合に限定されます。その数は

9C4 = 126 通り

です。まだひとつずつチェックするには大変な数なのでもう少し絞り込みます。

5 と偶数の両方が含まれるとそれらを掛けあわせることでゼロにすることができます。また、( 1, 9 )( 2, 8 )( 3, 7 )( 4, 6 ) の組み合わせも和はゼロになります。5 と奇数だけの組み合わせにすると、1, 3, 7, 9 の中から三つ選ぶ必要があり、どの組み合わせをとっても和がゼロになるペアが含まれるので、5 を含む場合は必ず 10 の倍数にすることができます。1, 2, 3, 4, 6, 7, 8, 9 から 4 つ選択し、かつ和がゼロになるペアを含まないようにするためには、( 1, 2, 3, 4 ) と ( 9, 8, 7, 6 ) の二つの組み合わせに対し、同じ位置の数を反転させて作られる全ての組み合わせだけを考えなければなりません。それは 24 = 16 通りあります。それらを列挙して調べてみると、

1, 2, 3, 4 ... 3 - 2 - 1 = 0
1, 2, 3, 6 ... 3 - 2 - 1 = 0
1, 2, 7, 4 ... 7 + 2 + 1 = 10
1, 8, 3, 4 ... 4 - 3 - 1 = 0
9, 2, 3, 4 ... 9 - 4 - 3 - 2 = 0
1, 2, 7, 6 ... 7 + 2 + 1 = 10
1, 8, 3, 6 ... 6 + 3 + 1 = 10
9, 2, 3, 6 ... 9 - 6 - 3 = 0
1, 8, 7, 4 ... 8 - 7 - 1 = 0
9, 2, 7, 4 ... 9 - 7 - 2 = 0
9, 8, 3, 4 ... 9 + 4 - 3 = 10
1, 8, 7, 6 ... 1 + 6 - 7 = 0
9, 2, 7, 6 ... 9 - 7 - 2 = 0
9, 8, 3, 6 ... 9 - 6 - 3 = 0
9, 8, 7, 4 ... 9 + 8 - 7 = 10
9, 8, 7, 6 ... 9 + 8 - 7 = 10

従って、必ず 10 の倍数が作れることになります。

---

他の問題を考えると、煮詰まっていた頭が整理できたりするようですね。最後に、この問題を考案して下さった wand125 様に感謝します。

それにしても、今月中に更新できるのか不安になってきました。あと三つほどヤマを越さなければいけません...

この記事へのトラックバックURL

http://fussy.mediacat-blog.jp/t98819